Temporal Variability of Sulfur Hexafluoride and Trifluoromethyl Sulfur

Pentafluoride Concentrations in the Atmosphere

Yasemin Erboy¹, William M. Smethie Jr.²

Sulfur hexafluoride (SF₆) is a greenhouse gas formed through anthropogenic processes such as the manufacture of high voltage equipment. Recently trifluoromethyl sulfur pentafluoride (SF₅CF₃) has been tied to SF₆ because of their parallel trend of increase in the atmosphere. The purpose of this project was to study the variability of SF₅CF₃ using gas chromatography to confirm its use as a tracer. The main question was whether SF₅CF₃ has a unique rate of increase, meaning that it has different sources than SF₆; or whether it correlates with SF_6 , in which case it could be a by-product of SF_6 production. Dichlorodifluoromethane (referred to as F12) was also studied to serve as a basis for the accuracy of the measurements made in Palisades, New York; an ideal location to study the compounds' local sources. SF_5CF_3 did not correlate significantly with SF_6 , F12 or any atmospheric variable studied, whereas SF₆ was seen to correlate with relative humidity and atmospheric CO2 concentration. Compared to historical data, our SF_6 or F12 values were not as high; for F12 this was expected since it was recently discontinued, and for SF_{6} it could be due to the short sampling period. SF₅CF₃ also did not exhibit as much variability, which can be explained by the atmospheric mixing ratio of SF₅CF₃ (Busenberg and Plummer, 2008) which appears to have leveled after 2000, due to increased awareness of its potency as a greenhouse gas. The effect of wind direction was also studied: very high SF₆ values were observed from highly urbanized areas in NE and SW as well as Manhattan. Both SF₆ and SF₅CF₃ peaked with winds from N, indicating Dutchess County where IBM produces plasma in semiconductor etching. These results have proved that the atmospheric variability of SF₅CF₃ is easily documented and that the compounds may have a complex relationship with their sources, which merits further research.

¹ Columbia College, Columbia University, New York, New York.

² Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York.